STEREOCONTROLLED SYNTHESIS OF SHOWDOMYCIN AND 6-AZAPSEUDOURIDINES¹

T. Sato, R. Ito, Y. Hayakawa, and R. Noyori *
Department of Chemistry, Nagoya University, Chikusa, Nagoya 464, Japan

(Received in Japan 8 March 1978; received in UK for publication 30 March 1978)

The lactone acetonide 1, having a \underline{C} - β -glycoside structure, can be prepared in a stereospecific manner starting from acetone and furan. Alternatively, this compound may be obtained by lactonization of the corresponding seco-acid prepared from D-ribose. Here we describe an aldol route to certain C-nucleoside antibiotics starting with such lactone.

Reaction of the lactone 1 and furfural aided by lithium cyclohexylisopropylamide (THF, -78 °C, 1 hr) afforded the aldol adduct 2 (Fur = α -furyl, a single threo isomer), mp 136-137 °C, in 90% yield. Dehydration of 2 was then affected by treatment with pivaloyl chloride in pyridine (25 °C, overnight) followed by heating in the same solvent at 90 °C, yielding 3^8 quantitatively. Subsequent treatment with 0.05 M methanolic sodium methoxide (0 °C, 30 min) gave the methyl ester 4 in 86% yield, whose hydroxyl group was protected by a silyl group to afford 5^9 (t-butyldimethylsilyl chloride/imidazole, 10^9 DMF, 25 °C, 1 hr, 100% yield).

Ozonolysis of $\underline{5}$ in ethyl acetate at -78 °C followed by reductive workup with dimethyl sulfide produced unstable keto ester $\underline{6}$, 12 which without purification was subjected to Wittig reaction with $(C_6H_5)_3$ PCHCONH₂ (CHCl₃, 25 °C, 3.5 hr), 13 leading to $\underline{7}^{14}$ in 29% yield (based on $\underline{5}$). Finally, removal of the protective groups with 50% aqueous trifluoroacetic acid (25 °C, 10 min) produced showdomycin ($\underline{8}$), identical in all respects with authentic sample. 16 Such overall transformation has been achieved without any epimerization at the anomeric center (C-1 position of ribose skeleton). Ozonolysis of $\underline{3}$ followed by Wittig condensation with $(C_6H_5)_3$ PCHCONH₂ also gave showdomycin acetonide ($\underline{9}$) but the yield was only 15%.

Further, the keto ester 6 serves as a precursor of certain 6-azapseudouridines. For instance, condensation of crude 6 with semicarbazide hydrochloride in aqueous methanol containing sodium acetate (12 hr at 25 °C and then 6 hr at 60 °C) gave the semicarbazone 10 (syn/anti = 1:1, 18 32% based on 5), which upon exposure to 0.1 M ethanolic sodium ethoxide (reflux, 3 hr) furnished the 6-azauracil derivative 12 in 44% yield. In a similar manner, reaction of 6 and thiosemicarbazide (CH₃OH, reflux, 12 hr) afforded the thiosemicarbazone 11^{20} (26% based on 5). Its cyclization with sodium ethoxide in ethanol (reflux, 3 hr) produced the 6-aza-2-thiouracil derivative 13^{21} in 59% yield. Again the construction of the heterocyclic nuclei was performed under complete stereochemical control with retention of the original β configuration.

$$t$$
-C₄H₉(CH₃)₂SiO t -C₄H₉(CH₃

ACKNOWLEDGMENTS

Financial support from the Ministry of Education, Japanese Government (Grant-in-Aid for Scientific Research, No. 203014), and the Naitoh Research Grant for 1976, is acknowledged. We are also indebted to Dr. Wataru Nagata of Shionogi Research Laboratory for a generous gift of showdomycin.

REFERENCES AND NOTES

- Carbon-Carbon Bond Formations Promoted by Transition Metal Carbonyls. 26. Part
 Y. Hayakawa, F. Shimizu, and R. Noyori, <u>Tetrahedron Lett.</u>, in press.
- 2. R. Noyori, T. Sato, and Y. Hayakawa, J. Am. Chem. Soc., in press.
- 3. R. Noyori, Ann. New York Acad. Sci., 295, 225 (1977).
- 4. W. J. Gensler, S. Chan, and D. B. Ball, J. Am. Chem. Soc., 97, 436 (1975).
- H. Ohrui, G. H. Jones, J. G. Moffatt, M. L. Maddox, A. T. Christensen, and S. K. Byram, J. Am. Chem. Soc., 97, 4602 (1975).
- 6. Reviews: R. J. Suhadolink, "Nucleoside Antibiotics", Wiley-Interscience, New York, N.Y., 1970, pp 354-404; G. D. Daves, Jr., and C. C. Cheng, Progr. Med. Chem., 13 303 (1976); S. Hanessian and A. G. Pernet, Advan. Carbohydr. Chem. Biochem., 33, 111 (1976).
- 7. IR (CHCl₃) 3200-3600 (OH), 1728 cm⁻¹ (C=O); NMR (CDCl₃) δ 3.48 (dd, \underline{J} = 9 and 5 Hz, CHCH(OH)Fur), 5.25 (dd, J = 9 and 7 Hz, CHCH(OH)Fur).
- 8. IR (CHCl₃) 1715 (C=O), 1627 cm⁻¹ (C=C); NMR (CDCl₃) δ 7.24 (s, =CHFur).
- 9. IR (CHCl₃) 1709 (C=O), 1634 (C=C), 831 cm⁻¹ (Si-O); NMR (C_6D_6) δ 3.38 (s, OCH₃), 7.44 (s, =CHFur).
- 10. E. J. Corey and A. Venkateswarlu, <u>J. Am. Chem. Soc</u>., <u>94</u>, 6190 (1972).
- 11. J. J. Pappas, W. P. Keaveney, E. Gancher, and M. Berger, <u>Tetrahedron Lett.</u>, 4273 (1966).
- 12. IR (CHCl₃) 1752, 1725 cm⁻¹ (C=O).
- 13. (a) G. Trummlitz and J. G. Moffatt, <u>J. Org. Chem.</u>, <u>38</u>, 1841 (1973); (b) S. Trippett and D. M. Walker, <u>J. Chem. Soc.</u>, 3874 (1959).
- 14. IR (CHCl $_3$) 3220-3480 (NH), 1775, 1720, 1620 cm $^{-1}$ (C=O); UV $\lambda_{\rm max}$ (CH $_3$ OH) 221 nm (log ϵ 4.14); NMR (CDCl $_3$) δ 1.37, 1.59 (s, 3 H each, CH $_3$), 6.57 (s, =CH). Difference in chemical shift due to the acetonide methyls, $\Delta\delta_{\rm CH}_3$ = 0.22 ppm, indicates the β configuration at the C-1 position. ¹⁵
- 15. J. L. Imbach and B. L. Kam, J. Carbohydr. Nucl. Nucl., 1, 274 (1974).

- 16. Previous synthesis of showdomycin: refs 2 and 13a; L. Kalvoda, J. Farkas, and F. Sorm, Tetrahedron Lett., 2297 (1970); L. Kalvoda, J. Carbohydr. Nucl. Nucl., 3, 47 (1976).
- 17. Such C-nucleosides have been prepared only by transformation of pseudouridine: M. Bobek, J. Farkas, and F. Sorm, Tetrahedron Lett., 1543 (1968); Collect. Czech. Chem Commun., 34, 1690 (1969).
- 18. NMR (CDCl3) & 10.21, 11.29 (1:1 ratio, anti and syn =NNHCO protons, respectively).
- 19. The cyclization was carried out according to the method of G. Just and S. Kim, Can. J. Chem., 55, 427 (1977).
- 20. IR (CHCl₃) 3520, 3380, 3280 (NH), 1731, 1715 cm⁻¹ (C=O); UV λ_{max} (CH₃OH) 268 (log ϵ 3.83), 314 nm (3.72).
- 21. NMR (CDCl₃) δ 1.38, 1.59 (s, 3 H each, CH₃), $\Delta\delta_{\text{CH}_3} = 0.21 \text{ ppm}^{15}$), 9.90, 10.6 (br s, 1 H each, NH); UV λ_{max} (0.1 N HCl) 213 (log ϵ 3.87), 269 nm (4.15), λ_{max} (CH₃OH) 213 (log ϵ 3.57), 272 nm (4.08), λ_{max} (0.1 N NaOH) 226 (log ϵ 4.21), 258 (4.06), 313 nm (3.51).